由于汽车碰撞安全法规是指导汽车碰撞安全性设计与改进的依据,改善碰撞安全性的措施一般都瞄准如何直接和间接地降低法规所规定地伤害指标这一总目标。纵观国内外现有技术状况,汽车碰撞安全措施主要可分为两类:

1、汽车结构缓冲与吸能措施;2、车内乘员保护措施。
碰撞吸能区的作用
碰撞吸能区的概念是梅塞德斯奔驰在20世纪60年代首次提出来的。其设计为在发生撞击时车身发生逐渐变形,以吸附事故中产生的绝大部分的撞击能量。车身改为这种可以变形的设计后,乘员所承受的强烈的撞击力就可以大大减小。
汽车车身结构几乎都是由薄壁金属件构成,在发生碰撞时,受到强烈撞击的薄壁构件会发生塑性变形,这种塑性变形本身伴随着碰撞能量的吸收。因此,车辆结构的碰撞吸能设计很大程度上是薄壁件的碰撞性能设计。与一般的吸能元件不同,薄壁构件的碰撞吸能除了与本身的材料有关外,还与焊点、材料壁厚、横截面以及预变形密切相关。
焊点与吸能
薄壁构件的形成是通过对金属薄板进行冲压、弯折等冷加工变形后,再通过焊点(点焊)连接而构成,焊点断开或焊点处材料撕裂能够有效的吸收碰撞动能,当焊点强度过低则会严重影响薄壁构件对碰撞能量的吸收。
在设计碰撞吸能用的薄壁构件时,为了不影响其撞击吸能特性,应尽量避免焊点在碰撞过程中过早的脱开。一般情况下,焊点的开裂与以下因素有关:
1. 焊点强度:包括法向拉脱力FNS与切向剪切力FTS。当焊点实际受力与FNS及FTS满足一定的关系时,焊点就会开裂。
2. 焊接形式:主要是指焊接形式,不同的焊接将导致截面承受碰撞的能力各不相同。
3. 焊点的疏密程度。
壁厚与吸能
薄壁构件的壁厚与碰撞吸能是直接相关的,对于同样模式的变形,变形所吸收的能量与壁厚之间式指数增长的关系。在结构设计中,壁厚的选择必须与实际情况相适应,壁厚太小容易变形,但可能不具备足够的吸能能力,而壁厚过大又不易变形吸能。